def split_dataframe_rows(df,column_selectors):
# we need to keep track of the ordering of the columns
def _split_list_to_rows(row,row_accumulator,column_selector):
split_rows = {}
max_split = 0
for column_selector in column_selectors:
split_row = row[column_selector]
split_rows[column_selector] = split_row
if len(split_row) > max_split:
max_split = len(split_row)
for i in range(max_split):
new_row = row.to_dict()
for column_selector in column_selectors:
try:
new_row[column_selector] = split_rows[column_selector].pop(0)
except IndexError:
new_row[column_selector] = ''
row_accumulator.append(new_row)
new_rows = []
df.apply(_split_list_to_rows,axis=1,args = (new_rows,column_selectors))
new_df = pd.DataFrame(new_rows, columns=df.columns)
return new_df
def explode(df, lst_cols, fill_value='', preserve_index=False):
# make sure `lst_cols` is list-alike
if (lst_cols is not None
and len(lst_cols) > 0
and not isinstance(lst_cols, (list, tuple, np.ndarray, pd.Series))):
lst_cols = [lst_cols]
# all columns except `lst_cols`
idx_cols = df.columns.difference(lst_cols)
# calculate lengths of lists
lens = df[lst_cols[0]].str.len()
# preserve original index values
idx = np.repeat(df.index.values, lens)
# create "exploded" DF
res = (pd.DataFrame({
col:np.repeat(df[col].values, lens)
for col in idx_cols},
index=idx)
.assign(**{col:np.concatenate(df.loc[lens>0, col].values)
for col in lst_cols}))
# append those rows that have empty lists
if (lens == 0).any():
# at least one list in cells is empty
res = (res.append(df.loc[lens==0, idx_cols], sort=False)
.fillna(fill_value))
# revert the original index order
res = res.sort_index()
# reset index if requested
if not preserve_index:
res = res.reset_index(drop=True)
return res